Setka42.ru

Сетка №42
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

А Вы знаете, как проходит тампонирование скважин

А Вы знаете, как проходит тампонирование скважин

Заключительный этап бурения, это тампонажные работы. Процесс заключается в том, что в затрубное пространство обсадной колонны вводится цементный (тампонажный) состав, после чего в течение нескольких суток происходит его затвердевание. В результате раствор превращается в камень – монолитную «рубашку», в которой заключена обсадная колонна скважины. Технология цементирования скважин сложная, требует специальных знаний и опыта, а в работе используется специальное оборудование для цементирования скважин. Работа проводится несколькими методами, в зависимости от назначения сооружения, типа грунтов и глубины залегания водяных жил.

Завершающий этап бурения скважин - это цементирование, данная операция влияет на всю работоспособность сооружения

Состав и особенности

Тампонажный цемент представляет собой вяжущий состав, который почти не имеет отличий от портландцемента. Однако присутствуют повышенные требования к содержанию клинкера. В тампонаже доля клинкера может достигать 100%. Обязательная примесь — до 3,5% молотого гипса.

Чтобы улучшить свойства материала, можно дополнять его различными минеральными элементами, которые в сумме будут составлять не более 12% от общей массы. Должно быть не больше 10% известняка, шлаков — до 20%.

Условия, нормы веществ и предназначение для тампонажного цемента записаны в ГОСТ 1581. Тип веществ определяется процентной долей огнеупорных примесей и остальных компонентов. Рецепт готового цемента может варьироваться в зависимости от производителя.

  • мельчайший помол;
  • ускоренный процесс затвердевания;
  • повышенная механическая прочность и жесткость;
  • при разбавлении водой консистенция отличается от таковой у других видов цемента.

К показателю текучести есть повышенные требования в строительных нормах и правилах. Скорость перемещения раствора цемента должна достигать 1,5 м/с при небольших размерах технологических отверстий. Из-за чрезвычайно высокого давления в местах использования такого состава песок, арматура, опалубка, щебень не добавляются. Поэтому вяжущее является единственным компонентом.

Особенности применения такого состава обусловливают высокие требования к нему как к строительному материалу. Он должен понижать оказываемое давление на трубопровод или другую часть, которая подвергается изоляции. Кроме того, тампонажный раствор должен обладать большей скоростью застывания, которая достигается за счет ввода различных добавок во время изготовления.

Какие факторы и как их учитывают при выборе тампонажного материала для цементирования конкретного интервала скважины?

Полноценный цементный камень защищает обсадную колонну от продольной и поперечной деформации, коррозии, изолирует проницаемые пласты и укрепляет стенки ствола скважины. Вероятность качественного цементирования снижается при увеличении интервала цементирования, при возникновении притоков пластового газа и флюидов из проницаемых интервалов и в значительной степени зависит от соответствия свойств тампонажного материала реальной горно-геологической обстановке и от реализованной гидравлической программы цементирования.

Цементирование устойчивых непроницаемых интервалов большой протяженности чаще всего не оправдано, т.к. повышает вероятность некачественного цементирования, особенно при низком градиенте гидроразрыва пород ствола скважины.

Основное назначение цементного камня – предотвратить возможность перетока жидкости (газа) из одного пласта в другой или в атмосферу.

    Требования к цементному раствору:

Требования к тампонажным материалам для цементирования нефтяных и газовых скважин в основном определяются геолого-техническими условиями в скважинах.

Проблема выбора материалов сложна. Тампонажный раствор должен оставаться подвижным во время транспортирования в заколонное пространство и сразу же после прекращения процесса затвердеть в безусадочный камень с определенными физико-механическими свойствами. Указанные процессы происходят в стволе скважины сложной конфигурации, где температуры и давления изменяются с глубиной, имеются поглощающие и высоконапорные пласты, а также пласты с наличием минерализованных вод, нефти и газа.

При таких изменяющихся условиях один тип цемента или одна и та же рецептура тампонажного раствора не могут быть одинаково приемлемы. Один тип цемента не может отвечать всем требованиям, связанным с разнообразием условий далее в одной скважине.

Геометрия заколонного пространства

Влияние этого фактора проявляется в двух направлениях. Чем «неправильнее» форма, т.е. чем больше она отличается от цилиндрической, тем труднее вытеснить буровой раствор из заколонного пространства. Чем больше выступов и сужений и чем они резче, тем больше при использовании без специальной химической обработки портландцементного или шлакового растворов образуется водных карманов вдоль ствола скважины.

При твердении тампонажного раствора в наклонных скважинах облегчается образование каналов непосредственно в тампонажном растворе за счет прохождения седиментационных процессов.

Подвижность тампонажного раствора

Наиболее важное свойство тампонажного раствора — его подвижность, т.е. способность легко прокачиваться по трубам в течение необходимого для проведения процесса цементирования времени.

Это свойство тампонажных материалов определяется природой вяжущего, тонкостью помола, водоцементным отношением, количеством, степенью загрязненности и удельной поверхностью наполнителя, добавок, а также условиями, в которых раствор пребывает в течение процесса цементирования, временем и способом перемешивания раствора.

Требуемая подвижность раствора обусловлена техникой и технологией проведения тампонажных работ и может быть изменена в желаемую сторону. Метод определения подвижности позволяет быстро подбирать количество воды при соответствующем составе смеси.

Дисперсанты

Назначение: снижение вязкости раствора.
Механизм действия: регулирование поверхностного заряда между частицами твердой фазы в растворе.
Дисперсанты предотвращают коагуляцию (слипание) цементных частиц.

Плотность тампонажного раствора

Одна из важнейших его характеристик. В процессе цементирования скважины плотность — практически пока единственный критерий для оценки качества тампонажного раствора. Плотность должна обеспечивать недопущение проявления пластового флюида и гидроразрыва пласта.

Читайте так же:
Цементная стяжка межпанельных швов

Колебания плотности тампонажного раствора при цементировании указывает на изменения его водоцементного отношения. Такие колебания считаются нарушением технологического режима процесса и могут привести к осложнениям, в частности, к повышению давления при цементировании.

Особенно трудно на практике придерживаться заданной рецептуры при затворении цементных смесей, дающих облегченные тампонажные растворы. Уменьшение плотности — это увеличение водоцементного отношения, что приводит к ухудшению свойств камня.

Наполнители

Сроки схватывания тампонажных растворов. Пригодность тампонажного раствора для транспортирования в заколонное пространство скважины оценивается сроками схватывания. Для определения этих сроков при температурах 22 и 75°С применяют прибор, называемый иглой Вика.

Началом схватывания считается время от момента затворения цемента водой до момента, когда игла, погружаясь в раствор, не доходит до нижней пластины на 0,5—1,0 мм, а концом схватывания — время от момента затворения цемента водой до момента, когда игла, погружаясь в раствор, проникает в него не более, чем на 1 мм.

Для определения сроков схватывания тампонажных растворов при высоких температурах и давлениях применяют специальный прибор — автоклав, рассчитанный на рабочее давление до 100 МПа и высокую температуру.

Расчет сроков загустевания и схватывания. Расчетная продолжительность процесса цементирования обсадной колонны не должна превышать 75 % времени начала загустевания тампонажного раствора.

Ускорители

Назначение: сокращают сроки загустевания, создают высокую раннюю прочность камня
на сжатие.

Механизм действия: увеличивает проницаемость C-S-H-гель слоя, формирование C-S-H-гель слоя на атомном уровне с реакцией с ионами Са2+.
Хлорид кальция СаСl2, хлорид натрия NaCl2, метасиликат натрия (безводный) Na2SiO, натриевая соль муравьиной кислоты, щавелевая кислота, триэтаноламин (ТЭА).

Замедлители

Назначение: увеличивают сроки загустевания.
Механизм действия:
Адсорбционная теория. Замедление происходит из-за адсорбции реагента на поверхность гидратационного продукта, таким образом, замедляется реакция с водой.

Теория выпадения осадка. Замедлитель реагирует с кальцием или/и гидроксильным ионом в водной фазе, формируя нерастворимый и непроницаемый слой вокруг частиц цемента.

Теория зародышеобразования. Замедлитель оседает на зародыш гидратационного продукта, предотвращая их дальнейший рост.

Теория комплексообразования. Ион кальция является хелатным по отношению к замедлителю, предотвращая образование зародышей.

Лигносульфонаты, гидроксикарбоксильная кислота (лимонная кислота), производные целлюлозы, органофосфонаты, некоторые неорганические соединения.

Консистенция тампонажного раствора. Для цементирования глубоких высокотемпературных скважин кроме сроков схватывания в статических условиях необходимо устанавливать изменение загустевания (консистенции) тампонажных растворов во времени в процессе их перемешивания.

Для указанной цели применяют консистометры КЦ-3 и КЦ-4, рассчитанные для испытания тампонажных растворов соответственно при температуре 200 и 250—300°С и рабочем давлении до 100 и 150 МПа.

Принцип действия прибора состоит в измерении крутящего момента на лопатке, который возникает при вращении с заданной частотой стакана с испытуемым цементным раствором.

Вспенивание. При закачивании цементного раствора в скважину необходимо обеспечить точность подсчета объема прокачиваемого раствора, а также бесперебойность работы насосов.

Серьезные последствия вызывает вспенивание раствора при его обработке различными химическими реагентами. При их больших дозировках во время приготовления цементного раствора часто образуется много пены, которая в значительной степени затрудняет работы, а главное — дает неверное представление об объеме закачанного раствора в скважину и его плотности.

Пеногасители — силиконы, полигликолевый эфир, трибутилфосфат. Снижают поверхностное натяжение на границе раздела газ-раствор.

Водоотдача цементного раствора. Одно из наиболееважных свойств цементного раствора его седиментационная устойчивость, характеризуемая водоотстоем. Результатом нестабильности раствора являются его расслоение, образование зон воды и цементного теста, несплошности цементного камня в заколонном пространстве скважины.

Радикальное мероприятие повышения стабильности тампонажных растворов — уменьшение их водоотдачи.

    При установлении предельно допустимой водоотдачи тампонажного раствора исходят из двух основных положений:

При водоотделении тампонажный раствор загустевает и при определенном количестве отфильтровавшейся воды может потерять прокачиваемость, что, как правило, приводит к осложнениям. Проникновение фильтрата тампонажного раствора в продуктивный пласт ухудшает его проницаемость, что способствует удлинению периода освоения скважины.

Понизители водоотдачи

Назначение: снижают водоотдачу раствора, снижают проницаемость цементного камня.

Механизм действия: увеличение вязкости водной фазы раствора, снижение проницаемости цементной корки за счет создания полимерной пленки или кольматации порового пространства.

Водорастворимые полимеры: полимеры целлюлозы, полиамины, сульфонатные ароматические полимеры, поливинилпирролидон, AMPS сополимеры и тройные сополимеры.

Порошкообразные мелкодисперсные материалы: бентонит, латекс, асфальтены, термопластические смолы.

Механическая прочность цементного камня. Механическая прочность цементного (тампонажного) камня является пока основной оценочной характеристикой тампонажных цементов. Механические свойства цементного камня характеризуются пределами прочности на изгиб образцов-балочек стандартного размера (в РФ) и на сжатие цилиндрических образцов (в США).

В зацементированном заколонном пространстве скважины могут возникать растягивающие, сжимающие и изгибающие напряжения. Однако можно заключить, что выбор испытания образцов в лаборатории пока не может определяться видами деформации в цементном кольце заколонного пространства скважины.

Опыт показывает, что для установления качества тампонажного цемента могут быть приняты все виды испытаний, но предпочтение следует отдавать изгибу и сжатию.

Упрочняющие добавки – нейлоновое волокно, измельчённая резина, латекс. Повышают сопротивление цементного камня действию внешних нагрузок во время различных технологических операций.

Читайте так же:
Средство для чистки кирпича от цемента

Седиментационная устойчивость

Противоосадочные добавки. Бентонит – вбирает в себя большое количество воды, гомогенизируя раствор. Некоторые водорастворимые полимеры (ГЭЦ и т.п.) снижают осаждение, но резко увеличивают вязкость раствора.

Морская вода и cиликаты (безводный метасиликат натрия) растворяются в воде, тем самым забирая часть воды, делая ее немного густой (в зависимости от концентрации).
Соли металлов (хлориды магния и никеля)

Реагенты для борьбы с поглощениями

Назначение: предотвращать поглощение раствора в пласт.

Механизм действия: создание тиксотропности цементного раствора, снижение динамических потерь давления создание каркасной структуры, предотвращающей уход раствора в пласт.
Гильсонит, гранулярный уголь, целлофановые хлопья, ореховая скорлупа, гипс, растворимые соли сульфатов, бентонит, сшитые полимеры целлюлозы.

Нейтрализаторы бурового раствора

Параформальдегиды, смеси параформальдегида с хроматом натрия. Для снижения влияния на свойства цементного раствора отдельных реагентов, применяемых в буровом растворе.

Порядок работ при ликвидационном тампонаже

Тампонаж проводят только после нагнетания вод под установленный тампон. При проведении этих работ тампоны постепенно передвигают таким образом, чтобы в различных интервалах хорошо исследовать пласты.

Если двигать тампоны снизу вверх, то ранее изученный интервал заполняют цементом или глиной.

Если же они продвигаются сверху вниз, производится углубление на интервал, по которому проводилось исследование. В верхнюю часть он перемещается по мере исследования интервалов.

Основное различие тампонов по принципу работы:

  • Механические;
  • Гидравлические;
  • Пневматические.

Принцип их действия довольно прост и подразумевает использование резиновой расширяемой манжеты. За счет такого механизма зазор между стенками колонн обсадных труб и скважины уплотняется. От глубины опускания тампона изменяется и величина зазора, который необходимо уплотнить.

Особенности проведения тампонажа скважины

Достаточно часто используют механический принцип тампонажа

Упрощенная конструкция резинового тампона выглядит как две трубы, которые соединены патрубками между собой. С наружной стороны закреплена резиновая манжета. В процессе вращения колонн происходит ввинчивание в муфту трубы патрубка, за счет чего расширительная манжета хорошо уплотняет зазор, который существует между стенками колодца.

Подбашмачный тампонаж применяется при роторном бурении.

Пневматические одинарные тампоны приводятся в действие за счет нагрева сжатых воды или воздуха. Такой механический прибор состоит из нижней и верхней части, которые разделяются перфорированной трубой.

Тампонирование нефтяных скважин

Первая в мире нефтяная скважина появилась в Российской империи в 1846 году. Теперь район, где она была пробурена, находится на территории Азербайджана. Скважина была геологоразведочной. А вот первую нефть из промышленной скважины получили американцы.

Это произошло, по разным данным, то ли в 1857, то ли в 1859 году.

Первые полвека своего существования нефтедобывающая промышленность обходилась без тампонирования скважин. Но примерно в 1907-1908 годах произошла первая удачная попытка уплотнения обсадной колонны цементным раствором с целью защиты нефтяных слоёв от проникновения воды.

Фото: vsic.ru

Тампонажный цемент

На заре промышленной нефтедобычи для задач тампонирования применяли самый обыкновенный портландцемент — точно такой же, как и для строительства. Однако по мере развития нефтедобывающей отрасли требования к тампонажным материалам стали более строгими.

Первые нефтяные скважины были неглубокими, а производимый в те времена цемент имел относительно грубый помол, примерно 1200–1300 см2/г.

Уже тогда проявились первые недостатки этого материала для тампонирования скважин. Дело в том, что на малых глубинах в условиях небольших давлений и температур цементный раствор слишком медленно схватывался. Это приводило к задержке пуска скважины в эксплуатацию, так как приходилось долго ждать затвердевания цемента, чтобы он стал достаточно прочным.

Тогда нефтедобывающие компании потребовали от производителей портландцемента, чтобы для них делали более мелкий помол этого материала. Нефтяники были готовы платить больше за дополнительный помол, чтобы получать для своих нужд цемент надлежащего качества, обладающий улучшенными техническими характеристиками.

Со временем и такие свойства перестали удовлетворять требованиям нефтедобывающих компаний. Скважины стали бурить на большую глубину, где давление и температура значительно выше, чем в неглубоких скважинах. В этих условиях быстросхватывающийся портландцемент не подойдёт, ведь он застывает ещё до того, как достигнет нужной глубины.

Из-за этого пришлось снова вернуться к цементам грубого помола. Более того, в состав стали вводить добавки, замедляющие его застывание. Первой стали использовать замедлители американцы. При помоле цемента добавляли гипс, а во время тампонирования — смесь борной кислоты и гуммиарабика. Позже для нужд нефтяников стали использовать и другие виды замедлителей. На данный момент максимальная глубина, на которой целесообразно использование цементов замедленного схватывания, составляет 4,8 километра.

Чаще всего тампонажные цементные растворы заливают между стенками скважины и обсадной трубой. Эта мера:

  • препятствует попаданию воды в нефтеносный слой;
  • предотвращает выбросы нефти и газа;
  • защищает материал обсадки от агрессивного воздействия внешней среды;
  • укрепляет обсадную трубу, снижая нагрузку на неё;
  • позволяет заполнять трещины, поры и каверны в породе.

Кроме этого, тампонажный раствор можно заливать в скважину для уменьшения её глубины или для консервации. С его помощью можно также ликвидировать дефекты обсадной трубы.

Читайте так же:
Состав цемента с минеральными добавками

Как происходит тампонирование скважин

Выбор тампонирующего раствора зависит от типа породы и других факторов. Например, если проникающий слой находится на небольшой глубине, не более полукилометра, состав для тампонирования проталкивают до нужной отметки с помощью бурового раствора. Если в породе есть крупные трещины, применяют вязкопластичный тампонажный состав. Он может включать в себя цемент, полимерные компоненты, составы на глины.

В цемент могут добавлять материалы, способствующие быстрому схватыванию, к примеру, хлористый кальций. Для изолирования пористых поверхностей применяют смолы, а для поглощающих карстовых полостей — глинолатексные составы. Использование смол для поверхностей, покрытых мелкими порами, очень эффективно, так как этот материал обладает большей проникающей способностью, чем цементные растворы.

Обычно закачивают тампонирующий состав через бурильную колонну на высоту участка, который следует изолировать. Тампонирование можно выполнять от забоя скважины или сверху. В последнем варианте его производят в один или несколько этапов.

Хотя одноэтапное заполнение делать проще, в некоторых случаях применение этого метода невозможно. Например, для такого способа нужно, чтобы расположение трещин было относительно равномерным. Многоэтапное тампонирование может проходить как с более глубоких горизонтов вверх, так и наоборот.

Если диаметр скважины невелик, зачастую используют пакер, с помощью которого производят изоляцию отдельных пластов.

Существует также циркуляционный метод. Он заключается в закачке избыточного количества тампонирующего раствора. Лишний материал по межтрубному пространству поднимается вверх. Хотя эта методика считается технически сложной, при её использовании не происходит закупорки трещин и других полостей.

Самые распространённые способы тампонирования нефтяных скважин

Рассмотрим подробнее наиболее распространённые способы тампонирования нефтяных скважин.

Для устранения негерметичности обсадной колонны и пространства за ней через фильтр скважины или дефект в колонне происходит закачка тампонажного раствора. Это самый распространённый вариант тампонирования скважин. Он может производиться тремя способами: с разбуриванием стакана; с вымыванием излишков; комбинированным методом.

В первом случае насосно-компрессорные трубы (НКТ) опускают в скважину таким образом, чтобы они оказались на 5–10 метров выше верхней границы отверстий фильтра или дефекта обсадной колонны. В них закачивают тампонажный раствор. Его излишки вымываются, а получившийся после его застывания в скважине стакан разбуривают.

Фото: belorusneft.by

Разбуривание затвердевшего цемента в колонне не всегда целесообразно. Чтобы обойтись без этого, производят вымывание тампонажного раствора, используя при этом противодавление на пласт. Очень важно, чтобы процесс закончился до того, как раствор затвердеет. Чаще всего данный метод используется, когда для тампонирования применяют нефтецементные растворы.

В некоторых случаях оба этих метода применяются в комплексе.
Этот способ называют комбинированным.

Ликвидационное тампонирование

Тампонирование производят не только для устранения дефектов поверхности и обсадной колонны, но и для ликвидации скважин. Это происходит в двух случаях. Скважина может быть пробурена для временных целей. Например, она является поисковой или разведочной. Кроме того, бывает, что эксплуатацию скважины прекращают. В этом случае её консервируют во избежание загрязнения с поверхности водоносных и нефтеносных горизонтов.

Чаще всего геологоразведочные скважины заполняют тампонажными составами после прекращения их использования.

Обычно для этого используют цементные мосты. При подборе состава тампонажных смесей в первую очередь учитывают степень агрессивности компонентов, входящих в состав подземных вод. Для тампонирования используют цемент, песок, глину, отходы бурения, ускорители застывания, различные добавки и другие компоненты.

Для агрессивных магнезиальных вод, температура которых не превышает 100 градусов по Цельсию, используют шлакопортландцемент.

Если температура подземных вод, имеющих нейтральный состав, превышает 100 градусов, то тампонирование производят портландцементом с добавлением кварцевого песка, который играет роль активной добавки.

Тампонирование нефтяной скважины, где присутствует сероводородная агрессивная среда, а температура достигает 250 градусов, проходит с использованием шлакопесчаного цемента.

Если подземные воды содержат агрессивные сульфатные компоненты, то используют портландцемент, обладающий повышенной сульфатостойкостью. Кроме того, в него добавляется ускоритель схватывания.

Если в скважине присутствуют соленосные отложения, её тампонируют цементом, основой которого является каустический магнезитовый порошок.

При консервации скважины, пробуренной на небольшую глубину и не имеющей значительного водопритока, используют просушенные шарики из глины с добавлением песка.

Один из самых сложных случаев — скважина с большим водопритоком, самоизливающийся поток которой может достигать полутораметровой высоты. Для её ликвидационного тампонирования потребуется целый комплекс мер, куда входит установка цементных мостов с гидроизолирующей перемычкой из глинистых шариков, а также применение различных наполнителей.

Правильный выбор тампонирующих составов и технологии проведения работ позволяют надёжно законсервировать скважину и избежать загрязнений подземных горизонтов.

Применение расширяющихся тампонажных материалов для ремонтно-изоляционных работ на месторождениях ПАО «Газпром Нефть»

Причинами обводнения скважинной продукции при эксплуатации нефтяных скважин становятся негерметичность эксплуатационной колонны (НЭК), заколонная циркуляция (ЗКЦ), прорыв нагнетаемой воды по наиболее проницаемым пропласткам При этом проведение работ (РИР) часто осложняется различными факторами, такими как большой интервал изоляции (при отключении пластов и интервалов негерметичности), отсутствие количественной и качественной оценки доли поступления водопритока из нецелевого интервала, наличие неоднородного цементного камня за эксплуатационной колонной, высокие перепады давления, а также сложная инклинометрия скважины. Все эти факторы влияют на выбор водоизоляционного состава для проведения ремонтных работ.

Читайте так же:
Пропорции для приготовления раствора цемента

В предлагаемой Вашему вниманию статье представлен опыт применения расширяющегося тампонажного материала (РТМ) при проведении РИР в осложненных условиях.

На сегодняшний день существует большое количество составов для РИР. Эффективность каждого состава зависит от пластовых температур, давлений и приемистости интервала изоляции.

Основной объем работ по устранению заколонных перетоков выполняется с применением тампонажных портландцементов, отверждение которых в результате химической реакции минералов с водой сопровождается эффектом контракции, то есть уменьшения абсолютного объема продуктов реакции по сравнению с объемом исходных веществ.

Также при проведении РИР используются различные растворы на основе микроцементов, гелеобразующие и вязкоупругие составы, смолы

С целью повышения качества РИР рабочая группа экспертов Центра «Газпром нефть», проведя предварительное исследование литературы по данному вопросу, приняла решение об испытании расширяющегося тампонажного материала (РТМ) и проведении работ (ОПР) на активах П и СП «Салым Петролеум Девелопмент Н.В.».

РАСШИРЯЮЩИЙСЯ ТАМПОНАЖНЫЙ МАТЕРИАЛ (РТМ)

Расширяющийся тампонажный материал — это смесь стандартного портландцемента с расширяющей добавкой, а также различными химическими и минералогическими добавками. В отличие от стандартного цементного раствора РТМ не дает усадки.

Есть два основных способа получения РТМ. При первом способе внутри образующейся структуры цементного камня возникает химическое соединение больше исходного, что приводит к «раздвижению» кристаллов твердеющего цемента и, соответственно, к увеличению его объема. Получение РТМ по первому способу осуществляется путем ввода в тампонажный состав различных добавок: хроматного шлама, каустического магнезита, раствора бишофита, хлористого натрия и хлористого кальция, смеси гипса и глиноземистого цемента, сульфата натрия, высококальциевых зол, оксида алюминия, пилиоксихлорида алюминия, негашеной извести, а также смеси оксида и феррита кальция [1].

Второй способ заключается в увеличении объема тампонажного цемента за счет газообразования. В тампонажном составе в результате химической реакции выделяется газ, пузырьки которого равномерно распределяются по объему цементного раствора, вследствие чего увеличивается общий объем тампонажного состава [2].

Для ОПР было принято решение о применении в качестве расширяющей добавки гидроксида кальция Ca(OH)2, или гашеной извести, исходным сырьем для которого служит , образующаяся в результате сжигания твердого топлива на ТЭЦ. По химическому, гранулометрическому и составам во многом идентична природному минеральному сырью, представляющему собой тонкодисперсный материал из частиц размером 3–315 мкм.

Тампонажный материал с добавлением гидроксида кальция после гидратации и размещения в запланированном интервале в заколонном пространстве скважины расширяется в процессе образования структуры цементного камня.

МЕХАНИЗМ РАСШИРЕНИЯ

Твердеющая цементная суспензия представляет собой смесь водной фазы и зерен исходного цемента, а также кристаллов новообразований, формирующих пространственный кристаллический каркас. При добавлении в цемент извести (СаО) происходит ее реакция с водой с образованием кристаллов гидроксида кальция Са(ОН)2 (портландита) призматической вытянутой формы. Последние обладают свойством достаточно быстро увеличиваться в объеме, удлиняясь.

Растущие кристаллы раздвигают другие элементы образующейся структуры, приводя к изменению внешних размеров системы. Поскольку кристаллы Са(ОН)2 (портландит) расположены хаотично, то и свободное расширение системы, не ограниченное внешними факторами, происходит равномерно разнонаправленно. При этом несколько возрастает общая пористость системы.

Постепенно прочность пространственного каркаса увеличивается, в нем начинают возникать напряжения, создающие в скважинных условиях кристаллизационное давление цементного камня на ограничивающую поверхность. Возникает механическое давление твердеющего цементного камня на обсадную колонну и стенки скважины.

После набора структурой определенной прочности, а также вследствие значительного снижения скорости реакции гидратации СаО, расширение прекращается. Величина механического давления расширения на ограничивающую поверхность в зависимости от степени обжига извести составляет от 0,6 до 0,8 МПа. Эти данные хорошо согласуются с данными по прочности цементного камня в момент, когда расширение прекращается.

Наглядно процесс расширения стандартного портландцемента можно увидеть на микрофотографиях, предоставленных специалистами Группы Компаний «Сервис Крепления Скважин» (рис. 1, 2).

На рис. 1 представлена поровая структура на основе ПЦТ в возрасте 48 часов, на рис. 2 — процесс расширения: вытянутые кристаллы Са(ОН)2 «раздвигают» кристаллы цементного камня (10 ч твердения). На рис. 3 показана микроструктура цементного камня РТМ в возрасте 48 часов. Отчетливо видны крупные кристаллы портландита, заполнившие поровое пространство цементного камня.

УСЛОВИЯ И РЕЗУЛЬТАТЫ ОПР

В период с октября 2016 по январь 2017 года на скважинах добывающего фонда филиала проводились ОПР с подтверждением наличия ЗКЦ по результатам геофизических исследований скважин (ГИС). Всего были выполнены пять . По данным ГИС после проведения РИР было подтверждено отсутствие ЗКЦ на всех пяти скважинах.

Работы проводились в скважинах с умеренными температурами (51–100°С), с линейным расширением тампонажного состава от 8 до 13%. Был подобран состав РТМ с оптимальными реологическими параметрами и положительными показателями, простой в приготовлении в полевых условиях в процессе затворения.

ОПР НА СКВАЖИНЕ СУТОРМИНСКОГО МЕСТОРОЖДЕНИЯ

В скважине Суторминского месторождения с перфорацией пласта БС7 в интервалах 2512–2516 и 2524–2528 м по результатам исследований (ПГИ, азотирование) отмечалось поступление воды через верхние перфорационные отверстия с перетоком с глубины 2457,6 м. Мощность непроницаемых интервалов сверху между верхними водоносным пластом и кровлей пласта БС7 составляет 10 м. Гидроразрыв пласта (ГРП) в скважине не проводился.

Читайте так же:
Цементный клей для утеплителя

Цель РИР — ликвидация заколонного перетока сверху (рис. 4).

Подготовка скважины к проведению РИР осуществлялась по следующему алгоритму:

  • спуск и райбирование эксплуатационной колонны (ЭК) в интервале 2400–2470 м под посадку пакера;
  • отсыпка интервала перфорации до глубины 2513 м;
  • опрессовка ЭК;
  • перфорация спецотверстий (СО) в интервале 2512–2513 м;
  • определение приемистости СО закачкой по ЭК;
  • спуск и посадка технологического пакера на глубине 2442 м.

Основные свойства тампонажного раствора приведены в таблице 1.

ПГИ (азотирование) после проведения работ показали отсутствие ЗКЦ. После завершения ремонта скважина была запущена с дебитом нефти 8,1 т/сут и жидкости — 32,0 м³/сут. Дополнительная добыча нефти с момента проведения составила 3,5 тыс. т при продолжительности эффекта 458 суток.

ОПР НА СКВАЖИНЕ ВЕРХНЕСАЛЫМСКОГО МЕСТОРОЖДЕНИЯ

Далее ОПР были произведены на скважине Верхнесалымского месторождения с большим зенитным углом. По результатам трассерных исследований был выявлен заколонный переток вверх до глубины 3508 м и вниз до глубины 3696 м.

В связи с тем, что пласт AС11.2 перфорирован в интервалах 3608–3622 и 3627–3637 м (общая протяженность интервала перфорации составляет 24 метра) возникла необходимость в ликвидации заколонного перетока сверху и снизу.

Мощность непроницаемых интервалов сверху между верхним водоносным пластом и кровлей пласта AС11.2 составляет 16 м. Мощность непроницаемых интервалов снизу между нижним водоносным пластом и подошвой пласта AС11.2 — 5 м. ГРП на скважине не проводился (рис. 5).

Соответственно результатам ГИС работы были выполнены в два этапа по следующему алгоритму:

  • спуск и райбирование ЭК в интервале предполагаемых работ;
  • перфорация СО в интервале 3661–3662 м;
  • посадка на глубине 3657 м;
  • выполнение первого этапа РИР (ликвидация нижнего перетока);
  • ожидание затвердевания цемента, отбивка забоя; • установка на глубине 3598 м;
  • перфорация СО в интервале 3587–3588 м;
  • посадка на глубине 3550 м;
  • выполнение второго этапа РИР (ликвидация верхнего перетока);
  • ожидание затвердевания цемента;
  • нормализация забоя путем разбуривания цементного стакана и до глубины 3643 м;
  • опрессовка интервала изоляции на давление опрессовки колонны;
  • реперфорация существующих интервалов;
  • трассерные исследования.

Впоследствии на скважине выполнены работы по закачке РТМ по рецептуре . Цель работ — устранение заколонного перетока снизу через интервал СО. Всего было приготовлено и закачано 2,0 м³ раствора при конечном давлении 80 атм. Основные свойства цементного раствора представлены в таблице 2. График закачки представлен на рис. 6.

Далее проводились работы по закачке РТМ по рецептуре с целью устранения заколонного перетока сверху. Всего было приготовлено и закачано 2,5 м³ раствора при конечном давлении 130 атм. График закачки представлен на рисунке 7.

Результаты ГИС и опрессовки интервала подтвердили ликвидацию ЗКЦ.

После завершения ремонта скважина была запущена с дебитом нефти 44,8 т/сут и жидкости — 60 м³/сут.

На текущий момент эффект продолжается, заметного изменения основных параметров не выявлено.

ВЫВОДЫ

По результатам ОПР технология с применением РТМ для ликвидации заколонных перетоков признана успешной. При этом рекомендуется РТМ с линейным коэффициентом расширения от 8 до 13,5%. Процесс расширения состава не должен продолжаться после завершения загустевания.

На скважинах с заколонными перетоками в обоих направлениях рекомендуется проведение работ в два этапа.

Применение расширяющегося тампонажного материала на основе гидроксида кальция показало высокую эффективность на стадии ОПР, успешно проведенных на месторождениях П и СП «Салым Петролеум Девелопмент Н.В.».

Список сокращений для таблиц

ВСО — водосмесевое соотношение; Температура ст температура статическая; Температура дн температура динамическая;
Вс — единица измерения Бердена — измерение консистенции цементного раствора при определении на под давлением;
ДНС — динамическое напряжение сдвига;
СНС — статистическое напряжение сдвига;
ПВ — пластическая вязкость.

Виды оборудования которое может понадобиться

В перечень технического обеспечения проведения работ включают следующее оборудование для цементирования скважин:

  • цементировочные агрегаты, необходимые для затворения цемента и его продавливания в скважину под давлением;
  • цементно-смесительные машины используют в тех же целях, что и цементировочные агрегаты;
  • цементировочная головка необходима для проведения промывки скважинного ствола и последующего цементирования его стенок;
  • заливочные пробки применяются в том случае, если выбирается двухступенчатое цементирование скважин;
  • другие виды мелкого оборудования, включая краны высокого давления, гибкие металлические шланги, устройства для распределения раствора и др.

Оборудование для цементирования скважин

Оборудование, необходимое для цементирования скважин, может быть установлено на грузовых автомобилях

Важно! Чтобы обеспечить качество выполнения сложной инженерной задачи, необходимо неукоснительно следовать требованиям технологического регламента, разработанного специалистами для крепления скважинных стволов. Также тампонажная бригада, в состав которой входят лишь квалифицированные рабочие, должна соблюдать технологическую дисциплину. Большое внимание уделяют и качеству используемых тампонажных материалов.

Как видите, процесс цементирования скважин зависит от профессионализма людей, задействованных в работах, и от материалов, используемых для выполнения поставленной задачи.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector